Viral Infections: Race against dengue

Understanding the kinetics of dengue viruses in the bloodstream can provide insights into the clinical outcomes of the disease.
  1. Swee Sen Kwek
  2. Eng Eong Ooi  Is a corresponding author
  1. Department of Infectious Diseases, Singapore General Hospital, Singapore
  2. Duke-NUS Medical School, Singapore
  3. Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore
  4. Department of Translational Clinical Research, Singapore General Hospital, Singapore
  5. Saw Swee Hock School of Public Health, National University of Singapore, Singapore

Dengue fever is an acute viral disease that afflicts an estimated 100 million people each year, killing around 40,000 of those infected (Bhatt et al., 2013). It can be caused by infection with any of the four different dengue viruses, so it is possible to catch the disease four times. Moreover, a primary infection can be followed by a secondary infection and, in some cases, post-secondary infections.

The geographic footprint of Aedes aegypti, the mosquito that transmits dengue viruses, covers the tropics and is expanding both northwards – it can now be found in northern California – and southwards (Pless et al., 2017). Globalization, urbanization and travel are the main drivers for the spread of the disease, which is undoubtedly going to worsen with climate change (Messina et al., 2019). There are currently no licensed antiviral drugs to treat dengue, and the two vaccines that have been licensed are of limited benefit, so as we wait for better vaccines and drugs, there is an urgent need to find new ways to combat dengue to complement existing efforts that target Aedes aegypti.

Dengue develops in phases. In the first two to three days after the onset of fever, dengue presents with symptoms similar to influenza and other viral infections. Around four to six days after onset, more dengue-specific symptoms – such as pain at the back of the eyes and decreased platelet count – become apparent. The critical phase of the illness occurs as the fever subsides: the risk of inflammation-driven vascular damage and leakage increases, and if this is not effectively managed, the result can be dangerously low blood pressure and multi-organ failure. When this happens, the fatality rate can be as high as 30%.

Higher levels of the viruses in the blood (also known as viremia) are thought to increase the severity of the disease. Lowering the amount of dengue virus in the bloodstream may, therefore, reduce the risk of severe dengue (Low et al., 2017). Now, in eLife, Nguyen Lam Vuong, Ronald Geskus and colleagues report how an antiviral drug might be able to alter the course of disease progression in dengue patients (Vuong et al., 2024). They also highlight the challenges that drug developers face.

Using pooled data from three studies conducted in Vietnam between 2000 and 2016, which included daily platelet counts and measurements of viremia for 2,340 dengue patients, Vuong et al. were able to reconstruct the kinetics of the different dengue viruses. In particular, the researchers were able to determine which type of dengue virus had been present and whether patients were experiencing a primary or secondary infection. Although they did not attempt to distinguish between secondary and post-secondary infections, most of the secondary dengue patients were likely experiencing their second infection, as the third and fourth infections are mostly asymptomatic (Olkowski et al., 2013).

The results of Vuong et al. – who are based at the Oxford University Clinical Research Unit Vietnam and other research institutes in Vietnam, the United Kingdom, the United States, Germany and Australia – show that viremia levels decreased rapidly following the onset of symptoms, depending on the type of virus, with dengue virus type-1 having the highest viremia levels in the first five to six days. High levels of viremia in the first two days following onset also correlated with a higher risk of severe dengue and risk of vascular leakage. In both primary and secondary infections, viremia levels of all four viruses decreased significantly after the first two days of fever, in correlation with the severity of the disease.

The results indicate that lowering viral levels could thus reduce the risk of vascular leakage and severe dengue. However, antiviral drugs would need to be highly potent in targeting viral replication to reduce viral levels faster than their natural decay rate. Antiviral treatment would likely also need to be given within the first two days following fever onset to effectively alter the course of the illness.

The ability to initiate treatment early also requires an early diagnosis, but it is difficult to differentiate between dengue and other viral fevers during the early stages of illness. Current point-of-care rapid tests detect the viral protein NS1 in the blood of dengue patients. However, this protein is less detectable in those with secondary infections (Chaterji et al., 2011): this is unfortunate because secondary infection is associated with a greater risk of severe dengue. This means that the use of current tests could thus, paradoxically, exclude many patients who need antiviral treatment.

To effectively target dengue fever, there is a need to develop both new drugs and new tests. While there are currently three highly promising drugs being tested in phases II and III of clinical trials, efforts to develop a low-cost rapid test that can accurately diagnose both primary and secondary infection are lacking. It would be a tragedy if – once licensed – antiviral drugs could not be given to dengue patients early enough to alter disease progression due to the lack of a suitable early diagnostic test.

References

Article and author information

Author details

  1. Swee Sen Kwek

    Swee Sen Kwek is in the Department of Infectious Diseases, Singapore General Hospital, Singapore

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0009-0000-7758-804X
  2. Eng Eong Ooi

    Eng Eong Ooi is in the Duke-NUS Medical School, Singapore, the Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, the Department of Translational Clinical Research, Singapore General Hospital, Singapore, and the Saw Swee Hock School of Public Health, National University of Singapore, Singapore

    For correspondence
    engeong.ooi@duke-nus.edu.sg
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0520-1544

Publication history

  1. Version of Record published: February 15, 2024 (version 1)

Copyright

© 2024, Kwek and Ooi

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 710
    views
  • 73
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Swee Sen Kwek
  2. Eng Eong Ooi
(2024)
Viral Infections: Race against dengue
eLife 13:e96018.
https://doi.org/10.7554/eLife.96018

Further reading

    1. Medicine
    Peigen Chen, Haicheng Chen ... Xing Yang
    Research Article

    Caesarean section scar diverticulum (CSD) is a significant cause of infertility among women who have previously had a Caesarean section, primarily due to persistent inflammatory exudation associated with this condition. Even though abnormal bacterial composition is identified as a critical factor leading to this chronic inflammation, clinical data suggest that a long-term cure is often unattainable with antibiotic treatment alone. In our study, we employed metagenomic analysis and mass spectrometry techniques to investigate the fungal composition in CSD and its interaction with bacteria. We discovered that local fungal abnormalities in CSD can disrupt the stability of the bacterial population and the entire microbial community by altering bacterial abundance via specific metabolites. For instance, Lachnellula suecica reduces the abundance of several Lactobacillus spp., such as Lactobacillus jensenii, by diminishing the production of metabolites like Goyaglycoside A and Janthitrem E. Concurrently, Clavispora lusitaniae and Ophiocordyceps australis can synergistically impact the abundance of Lactobacillus spp. by modulating metabolite abundance. Our findings underscore that abnormal fungal composition and activity are key drivers of local bacterial dysbiosis in CSD.

    1. Medicine
    2. Neuroscience
    Matthew F Wipperman, Allen Z Lin ... Olivier Harari
    Tools and Resources

    Gait is impaired in musculoskeletal conditions, such as knee arthropathy. Gait analysis is used in clinical practice to inform diagnosis and to monitor disease progression or intervention response. However, clinical gait analysis relies on subjective visual observation of walking, as objective gait analysis has not been possible within clinical settings due to the expensive equipment, large-scale facilities, and highly trained staff required. Relatively low-cost wearable digital insoles may offer a solution to these challenges. In this work, we demonstrate how a digital insole measuring osteoarthritis-specific gait signatures yields similar results to the clinical gait-lab standard. To achieve this, we constructed a machine learning model, trained on force plate data collected in participants with knee arthropathy and controls. This model was highly predictive of force plate data from a validation set (area under the receiver operating characteristics curve [auROC] = 0.86; area under the precision-recall curve [auPR] = 0.90) and of a separate, independent digital insole dataset containing control and knee osteoarthritis subjects (auROC = 0.83; auPR = 0.86). After showing that digital insole derived gait characteristics are comparable to traditional gait measurements, we next showed that a single stride of raw sensor time series data could be accurately assigned to each subject, highlighting that individuals using digital insoles can be identified by their gait characteristics. This work provides a framework for a promising alternative to traditional clinical gait analysis methods, adds to the growing body of knowledge regarding wearable technology analytical pipelines, and supports clinical development of at-home gait assessments, with the potential to improve the ease, frequency, and depth of patient monitoring.